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ABSTRACT

S---We study the fundamental properties of feedback for nonlinear,

~ time-varying, multi-input, multi-output,distributed systems. The

classical Black formula is generalized to the nonlinear case. Achievable

advantages and limitations of feedback in nonlinear dynamical systems

1are classified and rtudied in five, categories: desensitization,

C disturbance attenuation, linearizing effect, asymptotic tracking and

disturbance rejection, stabilization. Conditions under which feedback is

beneficial for nonlinear dynamical systems are derived. Our results show

that if the appropriate linearized inverse return difference operator is

small, then the nonlinear feedback system has advantages over the open-

loop system. Several examples are provided to illustrate the results.
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1. INTRODUCTION

Feedback is one of the most important engineering inventions.

Historically [1], some third century B.C water clocks may be

viewed as primitive feedback devices. Some more definite feedback

systems such as furnace temperature regulators, float regulators,

windmills, etc. were invented between the [6th and 18th century. However,

it is only at the turn of the 19th century, when James Watt invented the

steam engine governor, that the concept of feedback began to be appreciated

and used by engineers. Attempts to understand and to analyze the associ-

ated stability problems brought by feedback were then made by several

pioneers, e.g. Airy, Maxwell, Lyapunov, Routh, Hurwitz, Vyschnegradskii, etc.

Up to the 1920's, feedback devices were predominantly mechanical regulators

whose primary objective was to reduce the regulated error to zero. The

need of long distance telephony in the 1920's 12] resulted in the

crucial invention of the negative feedback amplifier by H.S. Black [3,4].

Black's major invention was to conceive the benefits of feedback resulting

from a high forward-path gain: he fed the output back to the input stage;

he showed that by using a high gain in the forward path, one obtains

an amplifier which is 1) more linear than the vacuum tubes in the forward

path, 2) insensitive to variations in the vacuum tubes in the forward

path, and 3) insensitive to noise Injected at the output stage. Depend-

ing on the applications, the requirements on negative feedback amplifier

and on mechanical regulators may be quite different. Nevertheless,

during World War II, the need of very accurate servomechanisms for

anti-aircraft defense brought them together. It is our opinion that

there is a unified underlying disciplne of feedback: different applica-

tions emphasize different aspects of that discipline.
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In practice, feedback is indispensable in many system designs

4because of 1) uncertainties: typically, incomplete knowledge of the plant

due to plain ignorance or to the Jnordinate cost of measurements;

unpredictable environmeuital effects; manufacturing tolerances; changes

in the characteristics due to ageing, wearing, loading,...; etc., and 2) the

use of inherently unstable clants, e.g. rockets, some chemical reactors, some

nuclear reactors, some advanced design airplanes,..., etc. The effective-

ness of feedback in coping with uncertainties was actually illustrated in

the process of Black's invention of the negative feedback amplifier [4]:

he realized that an "open-loop" cancellation scheme is impractical

(because it requires the two "paths" track each other) and he eventually

conceived the negative feedback amplifier. Moreover, Black's paper [3]

exhibited many of the achievable advantages of feedback such as desensi-

tization and disturbance attenuation.

Even though most of the existing expositions of the effects of

feedback are essentially based on transfer functions calculations (thus

necessarily restricted to the linear time-invariant case only), we believe

that the benefits of feedback are the consequence of two facts: first,

a topological structure - the loop; second, an order of magnitude

relation (in the context of Black's classical paper [3], it reads IS'I >> 1)

which is independent of the linearity requirement. Pursuing this point

of view, we derive'below ,the basic properties of feedback in a much more

f general framework: we make full use of the, recent developments in the

input-output formulation of nonlinear, distributed, time-varying, multi-

input, multi-output systems (see e.g, [5,6,7,8]). Such formulation

allows for, unstable, continuous-time-as well as discrete-time subsystems;

this- is achieved by using causality and the technique .of extended spaces,
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i.e. considering only the time interval [O,T], with T finite but arbitrary.

The contents of this paper are as follows.
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1i1.1 Densensitization. 111.2 Disturbance attenuation.

111.3 Linearizing effect. 111.4 Asymptotic tracking and distur-

bance rejection. 111.5 s,.tabilization

IV. Conclusion
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I.1 NOTATION

Let 1W (a) denote the field of real (complex, resp.) numi.ers. Let

JN denote the set of non-negative integers. Let + denote Ute set o'.
+

non-negative rational numbers. Let IR+ denote the non-negative real
0

line [O,o). .Let 1- denote the open right-half complex plane.

Let FR[s] (R(s)') be 'the set of all polynomials (rational functions, resp.)
in s with real coefficients. .Let IR q  (€~,  s ] p xq , Rl.(s) p lq ) denote

the set of all pxq matrices with elements in *R. (C, ]R[s]l-, ](s), resp.)-.

Let p(s) denote the degree of p(s)-ER[$] .Let CIR+ be -the set of

time instants at qhich-various signals of interest are defined: typically,

MR for *the, co'htinuous-time case , M for the discrete time case. Let

b be A no'rmed (semin6rmed) space of functions -mapping Z' into some

n n n nvector space VZ(, (typically, Y L n  L cor Z 2  , etc.).

Associated with the normed (seminormed) spaceVM Is the extended normed



(seminormed) space 7l e defined by {f:Z -VI VT+ ( fET< ° '

whr 'Me If T <
where fT: IfT, fT is obtained from f by a projection map PT' more

f(t), t < T
precisely, fT := PT is defined by fTt) =i , for t, T E . Let

t>T
PT~ e denote the class (P fIfEM }. Let H: aid to be
Pq'h1e P P P .T c Le -MeY~ -*e; H is sai ob

causal iff P VT Ei [8, p.38-39]. "Nonlinear" means "not
~-T T '

necessarily linear". ":=" means "Is defined by". "u.t.c." means "under

these conditions". Operators, i.e. maps from IM into e, are labelled

by boldface symbols (e.g. G,K,F,...). Let denote the 2-norm on C1.12 the

Let C denote the class of continuously differentiable maps [19, pp. 172].

We write a << b to mean that a is very small compared to b.

1.2 GENERAL FRAMEWORK

We will consider the nonlinear, feedback system S shown in Fig. I.,

where(1)

G:Oe e' is a nonlinear, causal operator representing (1.1)

the plant,

K: e 4 e is a nonlinear, causal operator representing (1.2)
- ee

the compensator,

F: Ve ) ke' is a nonlinear, causal operator representing (1.3)

~the feedback,

r E e is the system input, (1.4)

u E , is the plant in , (1.5)

y. E e is the system 221Ltput, (1.6)

I e E e, is the error signal, (1.7)

S1e' ' e are extended normed spaces, unless otherwise (1.8)

stated (hence PTe,etc. are normed spaces with norm

denoted by I).
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We shall assume that

-1

(I+FGK) is a well-defined nonlinear, causal operator (1.9)

mapping from e into fe

For specific conditions under which assumption (1.9) holds, see for example

[7, sec. 2.8; 8, pp. 47], Note that the closed-loop input-output map

H : r + y is given by GK(I+FGK)
-yr

II. BLACK'S FORMUJLA GENERALIZED

H.S. Black's invention of the negative feedback amplifier was

based on the following analysis [3]:. consider the feedback system S

shown in Fig. 1.1; let GK and F be specialized into the scalar transfer

functions p and , -cespectively, then the closed-loop input-output

transfer function.is

h
yr i++6 i11

= [I -y ji- (11.1)

1- (11.2)

for those frequencies where >> 1. (11.3)

Black's crucial observation is that for those frequencies where

l >> 1, or equivalently jl+gjj >> 1, the output y e r, iie., the

closed-loop input-output transfer function is essentially indepeiident

of p and is essentially ~ifieby. 0. So the recipe is: O is speci-

fied by the desired hyr and the forward path gain 1 is made as large as

possible to achieve (11.3).

Equations (11.1)-(11.3) summarize Black's fundamental observation.

We note that it is valid because L) there is a loop structure, .aid 2) the



loop gain 1i1, is large. This reasoning can be greatly generalized to

the case of nonlinear system S shown in Fig. I.1. Note that in the

linear, time-invariant casc, we only have to consider the sinusoidal in-

puts within some frequency band of interest and the corresponding sinu-

soidal steady-state responsa. But in the nonlinear case, we have to

formuiate the condil.on i, terms of inputs of interest, e.g., sinusoids

of various frequencies and amplitudes, step, ramp, parabolas, etc.

Theorem II.: (Black's formula generalized: soft version)

Consider the nonlinear, feedback system S shown in Fig 1.1 and

described by Equations (I.1)-(1.9). Let 9 de C e be the set of inputs

of interest. U.t.c. If, for T sufficiently large,

I' (I+FGK)- r << T r d,

I. ( .. << Irlr, r de (Il.4)

[ then, asymptotically

FH, I on (11.5)
- -yr - Rd,e

in the sense that, for T G Oj sufficiently large,

Ir - F yr r IT IrIT, Vr G d,e

Proof:

I I Since S ., Kare nonlinear, we have

F H_ (I+FGK)

-yr

!"i F Uy = FGK(I+FGK)- 1 J

-0 41
I ., i
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Hence for all r E

r - F Hyrr = (I+FGK)l r

Now let r e d C 6? and let T E 3 be large, then, using (11.4),d,e e

It - F UY TT IT
[r -Hyrr'T =[(FG-rT<<rT

and (11.5) follows., Q.E.D.

Remarks 1I.l: 1) (11.5) says that the feedback system 11 followed by
-yr

F behaves approximately like an identity operator as far ag the inputs

of interest are concerned. Equivalently, F is an approximate left-inverse

of Hyr on d,e' thus, on 6 d e H is essentially independent of G and

is essentially specified by F. (The left inverse is the one of interest

because any operator P: ' Vhas a right inverse Q in the sense that

there always exists a Q such that PQ I where I denotes the identity
- -~. d -d

restricted to P(V)).

b) Consider G perturbed into a; call Uy the resultin closed-loop
-yr

input-output mrap. If a satisfies (11.4), then F y on d i.e.,
- yr e

on d ' is insensitive to the plant perturbations. This, however,
d,e'

does not asset -'.at the relative -change in H will be much less than
- -yr

that in G; it simply aseerts that changes in - -have litL , effect on H

The exact relation between the relative change in H and the relative
-yr

change in Q is givea by Equation (lI1) below and discussed in Remarks

c) (11.5) s. a s bversion of Black's {ormula (11.2) To obtain

S F - " requires some additional assumptions. This is done in.- yr -

I 'I Theorems II.,2 and i. i'below.



Note hat eqn. (II.1) gives the exact relation

h 1 (11.7)
yr = -

As feedback designers know (see e.g. [9]), it is often advantageous to

write this equation in terms of the "inverse loop-gain"

I ,1 1 ((3)-ilI8
[ : " h~~yr-g Bl(l)]

1+011)

Theorem 11.2 below generalizes Black's result to the nonlinear case:

an estimate of the difference H r -F-1 r is obtained under the condition
-.yr

Y- that the "inverse loop-gain" is small for the class of inputs of

interest. Note the similarity in form between the right-hand sides of

eqn. (11.7) and eqn. (11.9) below.

Theorem 11.2 (Generalized BLack formula)

Consider the nonlinear, feedback system S shown in Fig. 1.1 and

described by eqns. (1.1)-(1.9). Let td,e CP be the set of inputs of

interest. Suppose that

(al) VT ET, PTe is a Banach space;

02) F-1 and e are well-defined nonlinear,
/ : e e an FK-'~ e

" causal maps;

I ; i -.Il (3)anfoechr d

(a3) (FGK) is continuous on e, and for each r e

Z n+ I  r- (FGK)-z n E iV(9d,e) C I'e' where z0  r, n M

andiV(Rd,e) denotes a neighborhood of Pd,e in e"

-9-



U.t.c. if

IF- (r-e)-F-rT

(i) F = su p  .7- TeT '

d,e -

e (I+FGK) r
eT#0

(ii) for each T e

-(FGK)-rl (FGK)- r.,
~ [(FGK) - ] sup ..... <1,... rl,r 2 G X(N, e) Ir-2 T

l,T 2,r

then, for each T E ',

-I I(FGK)-rlT
[Hyrr .r T _S 1(F-I I~ T ,r d,e1. (_ T (FGK)_I  9

T T-

In particular, if for T EV sufficiently large,

([FCK) -1 ] << 1 (11.10)

and I F- 1 r(0T

I(FGK)- rT << -- , Vr ,1.d

T 1(F-) d,e

then asymptotically,

! l~-yr = -~ o de(1.)

in the sense that for T GY sufficiently large,

jH r-F-1r I T , Fr Vr e (11.13)

Proof of Theorem 11.2: see Appendix.

Remark 11.2: Note that the classical Black condition that > I

(which is achieved, in design, with IpI > > 1) is a sufficient co ? i n

d , for the approximation (II.2). Thus one may want to pursue re Ida of



small inverse forward path gain (large IpI in the single-input single-

output case) as follows: aqsuming the existence of the required inverses,

frQm

H = GK(I+FGK)-  MO.14)
-yr

we obtain

-r = (I+FGK)(GK)~yr . . .

= F+ (GK) 1  (11.15)

This formula is the generalization to the nonlinear case of the well-

known cozresponding relation with matrix transfer functions [9, p. 121]

If we assume that Vy e 'd,e' the set of outputs of interest, and for

T (E-. sufficiently large

I(GK)-'yT < IFYIT (11.16)

then, asymptotically

H F , on (11.17)
-~yr o'e

in the sense that for T CZX sufficiently large, IHylY-FYT < F

Vy Note, however, since F and 11 are nonlinear, eqn. (11.17)
V d,e Nthwvr ic -yr

does not imply that II F
~yr ~

Going back to the Black formula (II.1), we note that the approxima-

tion (11.2), hr 1-, is valid as long as

yr

(11.18)

Theorem It.3'below generalizes this condition to the nonlinear case:

Il _eqn. (11.18) should be compared with the condition (ii) of Theorem 11.3 bel

4,1



Theorem 11.3:

Consider the nonlinear, feedback system S shown in Fig. I.1 and

described by eqns. (1.1)-(1.9). Let C Ie,-- the set of inputs of

interest. Suppose that F-: qe P is a well-defined nonlinear, causal

map.

U.t.c. if

IF- (r-e)-F ri
(i) X(F - ) : slip < ~o

rG 9d,e'

e :=(+FGK) r

T
(ii) for T L>,sufficiently large,

X(F ).I(I+FGK) rIT << IF-r IT, Vr d,e'

then, asymptotically,

Ri F- on (11.19)-yr d,e

in the sense that for T (. sufficiently large,

'I Hyr r-F-Ir << IF-rl , Vr E ed,e (11.20)

Proof of Theorem 11.3: see Append. x.

2ConO]ldry 11.3.1 (Q linear)

Consider the nonlinear, feedback system S- shown in Fig. 1.1 and described

by eqns. (1.1)-(1.9). Let Fbe linear. Let F': -e be a well-defned

e1 ea eldfn

linear causal map. Let kd,e C e be the set of inputs of interest.

U.,t.c. if for T sufficiently large -and V y e F-!A
( Ke



1

then conclusions (11.19) and (11.20) hold.

Proof of Corollary 1.3.1: see Appendix.

Coro.1ary 11.3.2 (i.near t Lm -invaria. - . case)

Consider the feedback system S shown in Fig. I.1 and described by

eqns. (1.1)-(1.9). Let the operators G, K, and F be linear, time-invariant

and represented by transfer function matrices G(s), K(s) and F(s),

respectively. Let C R consist of all sinusoidal inputs with
d, e e

frequencies in some interval 1 C It. Suppose that

(al) F-: + is a well-defined causal map;

(a2) the closed-loop system is exp. stable, i.e. the impulse response

of the transfer function 11 r - y is bounded by a decaying
.-y r

exponential.

U.t.c., if VW G Q, Vy G range F(jw) C C n(11.21

[ [ ~~~1(I+GKF) (J)) -. l <<[y[ II2.

1then

Hyr(JW) - F(JW) VW E (11.22)

I in the sense that Vr E n

iH yr(j)r-F(jw)-lr1 « IF(jw) 1rj, We (11.23)

ry
Proof of Corollary 11.3.2.: see Appendix

Remark 11.3.2,: If we use the X2-norm in n, condition (11.21) is satis-

(4) 1lfled if the largest singular value of [(I+GKF)(jw)]- is much smaller

than 1, for all w E S1.

-13-



Comments on Theorems 11.2 and 11.3:

(a) Theorems 11.2 and 11.3 conclude that, under suitable conditions, the

output y = 11yrr is, asymptotically (i.e. for large T), approximately equal-yr

to F r over the inputs of interest within a small relative error. Thus

eqns. (11.12) and (11.19) are complete generalizations of the Black formula

(11.2) to the nonlinear, time-varying, multi-input, multi-output, distrib-

uted systemq S shown in Fig. 1.1 and described by eqns. (I.J)-(I.9).

(b) Typically kd,e' the set of inputs of interest, consists of sinusoids

of various frequencies and amplitudes, or steps, ramps, parabolas, etc.,

of various magnitudes.

(c) Note that the extended spaces framework allows us to treat the case

where some of the operators G, K, F may be unstable and to state asymptotic

conditions such as eqns. (11.10), ([1.11).

(d) It is the nonlinearities of the maps G, K, F which forces us to use

hlgain (e.g. T[(FGK5- in theorem 11.2), or Lipschitzthe incrementalT

constants (e.g. X(F- ) in theorems 11.2 and 11.3), over appropriate sets,

to obtain our estimates. In the linear case, one would use the induced

norms of the corresponding maps over appropriate sets.

(e) Theorems 11.2 and 11.3 have important design implications: Given a

plant G, we first choose F such that, over the. inputs of interest, F -I is

asympotically the desired input-output map. Next we choose the compensa-

tor K So-that the conditions of theorem -I..2 (or of theorem 11.3) are

satisfied. Then, asymptotically, the closed-loop input-output map H is
-yr

close to F over the inputs of interest as we desired.

(f) Note that F can be nonlinear. A simple well-known example of

realizing a nonlinear map by a feedback system (with large forward-path

gain) is the logarithmic amplifier shown in Fig. II.1 Recall that node



is a virtual ground, and that the diode operates at currents much larger

than its saturating current I., thus F i DI- v0 is given by

v0  -v D -v T  I n i ). lhence v0 -- v in[ vi/(RiIl.

Examples:

To illustrate the implicatlion of the generalized Black formula on

nonlinear dynamical systems, we present the following two examples:

Example II.1 (Nonlinear, single-input single-output dynamical system)

Consider the nonlinear, feedback system S shown in Fig. I.1, where
8

G is characterized by a rational transfer function - x 10
3 4(s+l) (s+10 ) (s+10

followed by a nonlinear memoryless map (*) with 4() e C1 described by

11 112 z-3-i + " -fl5 ))'4-- z > 0.5

1- 08 .li05 1.40.O,8e z+0 ' 5 - 1. 2  ,z <_-0.5

K and F are characterized by constants k and 1, respectively. The closed-

loop system and the characteristics of the nonlinearity 4(') are shown in

Fig. 11.2 and Fig. 11.3, respectively. By theorem J1.2 (or theorem 11.3),

if k becomes large, then, asymptotically, the output y of the closed-loop

system will be approximately equal to the reference signal r(-) (since

F -I = 1 in this cast!. Fig. TT.4-Fig. 11.6 show the system output y(.),

1 the error signal e(.),and z(.), the input to the nonlinearity (.), in the

"steady state" for different values of kwhile the closed-loop system is

driven by r(t) = sin l0t. The effect due to high forward-path gain in a

feedback system is clearly illustrated by Fig. 11.4. Note that the high

forward-path gain distorts z(-), the input to the nonlinearity f(.), so

ij . -15-



that asymptotically, the output y(-) is approximately equal to sin 10t.

Example 11.2 (Nonlinear, multi-input, multi-output, dynamical system)

Consider the nonlinear, feedback system S shown in Fig. I.1, where

G is characterized by a rational function matrix

5 x 10 8  1 x 10 8

3 4 3 4L(s) = (s+)(s+10)(s+10) (s+l)(s+1O )(s+104) (11.25)

5x 10 5 X 10

L(s+l)(s+103 )(s+10 4 ) (s+l)(s+J.03 )(s+10 4 )

1
followed by a nonlincar memoryless C map i(-) described by

= I (11.26)
rz L2_] (1+0.2 tanh z1 )-v(z 2 )

with

0.5

VWz snz~~fE37 (11.27)

K and F are represented by the constant matrices kI and I, resp., both

i in IR x2.
inR

The closed-loop system, the characteristics of V(z), and the characteristics

of 1 +0.2.tanhz are shown in Fig. 11.7, Fig. 11.8, and Fig. 11.9, respec-

tively.., By theorem 11.2 (or theorem 11.3), if k is sufficiently large,

then, asymptotically, the output y of the closed-loop system will be

approximately equal to the reference signal r (since F = I in this case).

Fig. I.10-Fig.. 11.13 show the system output components yl(°), y2
( ) and

the error signal components e ('), e2 ('), respectively, for different

values of k E IR while the closed-loop system is driven by the reference
i~~i 10 IIi-1dI.: show that as

signal r r 0.8 sin lt 1 Fig. 11.10 and Fig. sw

[r ] = [OSilt



we increase the compensator gain k, the system output (vector) function

approaches to the reference signal r as if the closed-loop system was an

identity map despite the complicated couplings in the nonlinear plant G.

Fig. 11.14 and 11.15 show,for k = 40, a period of the steady-state trajec-

tories of the system outputs, y(.), and of the nonlinearity inputs, z(-),

on the y-plane and z-plane, .respectively. Note that the greatly distorted

trajectory of z(.) (due to the qoupling and saturation effects of (())

produces a system output y() very close to the reference signal [ sin lt

Consider the three large irregular lobes on the z(.) trajectory in the

2nd, 3rd and 4th quadrant of Fig. 11.15 which reach their peaks at time

instants t = 4.54, 4.90, 5.55 respectively. Observe that at those time

instants, at least one of the desired plant output component (yI = sin lOt,

Y2 = 0.8 sin15t) reaches the peak of the negative cycle of sinusoidal

waves (see Fig. II.10 and Fig. II.11). Further observe that y and zI ,

Y2 and z2 are of same sign for all t since 1+0.2tanhz > 0 and V(z) is

an odd function. Now at time t = 4.54, the desired plant output Yl(t) .98,

Y*(t) v -.70, thus v(z1 ) (M(z2)) is required to operate in its positive

(negative, resp.) "saturation" region. Due to the negative value cf z

1+0.2 tanhz 2  0.8. Consequently, (1+0.2 tanhz 2 )v(Z 1 ) "saturates"

earlier than v(z1 ) itself and zI is required to be a large positive number

so that y1 = (1+0.2 tanhz2 )(z) will be approximately equal to the

desired value 0.98. This explains the large lobe on the trajectory of

z(..) in the 4th quadrant. Similar reasoning explains the other two large

lobes in the 2nd and 3rd quadrant.4
-17-



III. ADVANTAGES AND LIMITATIONS OF FEEDBACK

Consider the, nonlinear, feedback system S shown in Fig. I.1 and

described by eqns. (1.1)-(1.9) which satisfies the conditions stated in

theorem 11.2 (or theorem 11.3), rhen asymptotically, the closed-loop

system input-output map H is approximately F Thus we should expect
-yr

that the closed--ilop system input-output map is insfensitive to the varia-

tions in the forward path map GK and that, if F is linear, the closed-loop

system is close to a linear system even though the forward path map GK

is highly nonlinear.

In the following, we show the advantages and limitations of feedback

for the nonlinear, feedback system S shown in Fig. 1.1: section III.1

calculates the exact effect of plant perturbations on the closed-loop input-

output map and demonstrates the relations between desensitization and i)

the feedback structure, ii) the perturbation on the feedback map F, and

iii) the closed-loop stability; section 111.2 establishes the exact effect

of various additive external disturbances on the closed-loop system output;

section III 3 defines a nonlinearity measure and then shows precisely

that feedback has a linearizing effect on a nonlinear plant; sections

111.4 and 111.5 briefly review the idea that feedback can achieve asymp-

totic tracking and disturbance rejection, and stabilize unstable systems.

IIIi DESENSITIZATION

One of the major reasons for using feedback in design is that feed-

back can reduce the effect of the plant perturbations on the input-output

map. One way to quantitativelX demonstrate the desensitization effect of

feedback is to compare a feedback design with a corresponding open-loop



design [10]: consider the nonlinear, feedback system S shown in Fig. I.1

and described by eqn3. (11.)-(1.9). Note that the closed-loop input-output

map H. : ro -+ y is given by GK(I+FGK)- . Also consider a comparison open-
~yr

loop system (shown in Fig. 111.1) consisting of the same plant G preceeded
by a compensatnr K " llt,:; the open-loop input-output map H : r y- y0

-0 -y r0~0r

is given by GK0. Now if we select

K = K(I+FGK) ,10 . . . . '( I I I J l )

then for all system inputs r, y = yo, i.e. the (nominal) open-loop input-

routput map H r- y is identical to the (nominal) closed-loop input-; Yor 0

output map H : r - y. Consider now an arbitrary, not necessarily small,
-yr

perturbation AG on the plant G, then the plant G becomes G : G+AG; the

closed-loop (open-loop) system input-output map H (Hy) becomes

K H +AH G KK(I+FGK) ,(H IH r Gy(r

-yr :  yr yr (y+r -yGr Y y o.r H -- - -

resp.). The perturbed closed-loop (open-loop) system is shown in Fig. 111.2

(Fig. 111.3, respectively).

Note that the changes of the closed-loop, and the open-loop system

input-output maps due to the plant perturbation AG are given by

I; Al~y Hyr-y = GK(I+FGK) 1 -GK(I+FGK) -  (111.2)

-y -lr-y

Al l = H -H = GK - 0 AG*K GK(I+FGK) (111.3)
~yYr -y 0 r -y 0 r Z-0 Z-. Z0

respectively.

Theorem 111.1 below generalizes some of the results in [10,11,12,46]

and establishes the exact relation between AH and AHy and thus makes

precise the desensitization effect of feedback for nonlinear systems.
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Theorem III.1 (Desensitization of plant perturbation by feedback)

Consider the nonlinear, feedback system S shown in Fig. I.1 and

described by eqns. (1.1)-(1.9). Also consider the comparison open-loop

system shown in Fig. III.1. Let AH and All denote the changes of the
~yr ~y0 r

closed-loop, and the open-loop system input-output maps due to the plant

perturbation AG, respectively. Assume that

(al) F: 021~ is linear;

(a2) the perturbed plant G satisfies (1.9), i.e. (I+FGK) is a well-

defined nonlinear, causal map mapping e into e;

(a3) GK: ie - and -( )- are C maps,

then

Alyr = I [I+D(K)F -  l l Y0 r on 'e (111.4)

where the Frkchet~derivative [13, p. 32] D(,K) is evaluated at

(I+FGK)- (rxAr) with Ar := FAH (r), r Gke, and a E [0,1].

Proof of Theorem III.1: see Appendix.

When the map GK is linear, theerem III.1 reduces to the following

well-known result [10; 11, p. 24-26; 11 includes an extensive bibliography].

CorollaryII.l.l (Linear case):

Under the conditions stated in theorem III., if in addition, GK is

linear, then

Ali = (I-CKF) -Al , oi 6e (111.5)
-yr ~yo



Proof of Corollary 111.1.1: Follows directly from the fact that D(GK) = GK,

when GK is linear.

Remarks 111.1:

(a) Theorem III.1 indicates that for a class of plant perturbations AG,

if K and F are chosen such that Vr E (C ), the class of inputs of

interest,

1 0 I+-Id r(r) << IAHy (r)i (111.6)

0yr
then, for such inputs r(.), the change of output (AH (r)) in the feedback

It I -yr

system S caused by the plant perturbation AG is much smaller than the

corresponding change in the open-loop system. Thus, with appropriate

feedback design, the nonlinear closed-loop system can be made less vulnerable

to the perturbations on the plant and hence performs more closely to the

desired input-output map.

(b) Equation (111.4) makes precise the concept (built upon linear cases)

that if onemakes the (Linearized) inverse return difference small, then

the closed-loop system is insensitive to the plant perturbations. Note

that eqn. (111,4) states precisely where D(GK) has to be evaluated and~~
along what path the linearized inverse return difference map should be

integrated.

(c) Differential sensitivity: suppose that G, H are invertible, then
-y

eqn. (111.4) implies that, since AH = AG.G- GK(I+FGK)-

AR ~ LED(GK~dldAG.G_
!H[yr (111.7)

-yr ;y

-For AG, hence Ar, sufficiently small, (111.7) can be approximated by
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AH iH-i- [I+D(GK)-F]-IAG - I  (111.8)~yr -yr . .. . .

'The minzp [I+D(CK)'F] is thus a complete generalization of the classical

differential sensitivity function (for linear time-iLivarlant case, see,

e.g. [14,15] for single-input single-output case, [10] for multi-input

multi-output case; for some nonlinear case, see e.g. [11]).

(d) Consider the special case where C, K, F are represented by some trans.-

fer funcion matrices G(s), K(s), F(s), respectively. To achieve desensi-

tization with respecc to the given plant G(s) by feedback, one may design

K(s) and F(s) so that the maximum sin ular value of the matrix

[I+G(jW)K(Jo)F(Jo)] I be much less than 1 over the frequency band of

interest. Then, by Corollary 111.1, I(Al yrr)(J) << "(Alyorr)(JW)1 2,ny

for any (Ail rjw) E C over the frequency band of interest. Note that

this requirement is not equivalent to the following: "over the frequency

band of interest, 1i(jw)l >> 1, Vi, where Xi(jw) is the i-th eigenvalue

of I+G(jw)K(Jw)F(Jw) . Hence, in the linear, time-invariant, multi-input,

multi-output case, plotting the eigenvalue loci of I+G(jw)K(j )F(JP)

with-w as a parameter, although useful for stability studies [16,17],

does not have the same desensitization interpretation as in the single-

input,, single-output case, (see e~g. (14; 15, Chap. 11]).

I Discussion:

A. Desensitization and Feedback Structure: We note that one feedback

stiucture is not necessarily superior to another one in terms of sensitivity

with bespect to the plant. We compare tie nonlinear, feedback system S

shown in Fig. 1.1 and described by eqns. (1.1)-(I.9) with the nonlinear,

multi-loop, feedback system shown in Fig. 111.4 which consists of the



same plant G and nonlinear, causal operators KI, K2 , F and F2 .

Suppose that the (nominal) closed-loop system input-output maps of

these two nonlinear, feedback systems are .identical, i.e.

GK(I+FGK) GK2 (I+F2GK2) - (111.9)

Now we have the following result.

Proposition !11.2:

If GK, CK2) KI are linear, then eqn. (111.9) becomes

'I+-KF) GK - 11+,K (F2+K F )] *GK K (111,10)
(I+GKF_ = [ 2 -J.1, -

Proof of PropdsitioI. ,11.2: see Appendix.

With eqn. (III.10), the relation of the (differential) sensitivities

of the two feedback structures shown in Fig. I.1 and Fig.. 111.4 is made

clear in the following remarks.

Remarks 111.2;

Ci t -(a) Suppose that, in addition, the maps F, F1 and F2 are also linear;
-1 .

then .I4.KF) and [I+GK2 (F2 i+K1F1  are the differential sensitivity

functions (see equn. (111.8)) of the feedback systems shown in Fig. I.1

and Fig. 111.4, respectiveLy. Thus eqn. (III.10) exhibits a relation

between these two differential sensitivity functions.

(b) In Lhe special case where G, K, F are represented by some scalar

transfer functions, eqn. (111.10) reduces to

[l+g(s)k(s)f(s) 2 k 1[!+ _sk () f (f(sl+k(s) f ( s ) ) -_ 1  k(s)(I.1

(1+9((212.111

Hence, by appropriately designing k(s), k k9 (), consistent with other

requirements, we can make the fecdback system shown in,-Fig. 1.1 either more,
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or less sensitive (to plafit perturbations, over the freque,;y bano of

ifiterest) than the one shown in rig. 111.4.

(c) For a recent discussion of using local feedback to design an audio

power amplifier, see [421.

B. Desensitization and Feedback Perturbations

Proposition "11.3 below derives the exact relation between the relative

change in the closed-loop system input-output map (due to changes of the plant

G and the feedback F) and the relative change in the feedback F, thus makes

clear the tradeoff between the sensitivities of the closed-loop system with

respect to the plant and to the feedback.

PropositionfIII.3 (Desensitization and feedback perturbation)

Consider the nonlinear, feedback system S shown in Fig. 1.1 and described

by eqns. (1.1)-(1.9), where the plant G is perturbed and becomes G. Let the

feedback map F-be perturbed and become F := F+AF. Let y .= GK(I+FGK)
- - -yr

1 2 + %  and : GK(I+K) H +AH : R +ti be well-defined nonlinear,

causal maps (thus AH r includes the effect of plant and feedback perturbations).

-yr _tadfebc etrain)

Suppose that

• R) is linear;

(a2) r: and are well-defined, causal maps;
C; e -yr: . qee

(a3) GK and (I!GK) are C -maps,

Then

Hro - [I+D(OK)F] d-I}' -"AF, on (111.12)

*" where 'tha if het deriv ative D (GK) °is evaluated- at (I+F ,K)- (r+aAr) With

L -

"A r -:AF *'H Xr a



Proof of Proposition 111.3: see Appendix.

Remarks 111.3:

(a) Note that if we choose to desensitize the closed-loop system with respect

to the plant G by making the inverse linearized return difference [I+D(GK)-F] -

"small" ovet some neighborhood of KV the class of inputs- of interest, as is
die

suggested by eqn. (111.4), then "+D(6K)*F]- da-I -I and by eqn. (111.12),

AHy- l = -F- ~ d :=on I d Thus, the relative change in H-yr -yr % d , e -yr d,e .;yr

is approximately equal to the relative change in the feedback F; consequently,

the closed-loop system is insensitive to the plant perturbations but sensitive

to the feedback perturbations.

(b) In the special case where G, K, F are represented by some scalar transfer

functions, eqn. (111.12) reduces to the classical result: over the frequency
hyr yr ,

band of interest, if il+g(Jo)k(Jw)f(Jw)l >> 1, then Af/f- -.

(c) It is often advantageous to trade the insensitivity Uith respect to the

feedback map F for the insensitivity with respect to the plant G, since the

feedback F is usually operated at a low power level and hence can be built

with inexpensive, high quality components.

C. Desensitization and lnstahility .1113)tafrms ier

It is well-known (see e.g. [14, 141-143]) that, for most linear,

time-invariant, single-input, single-output feedback systems, the closed-loop

system stability requirement imposes an upper bound on the system loop gain, thus

the stability requirement limits the achievable densitization of feedback.

We show below that such a constraint still holds for a large class of linear,

time-invariant, multi-input multi-output systems.

Consider the feedback system S shown in Fig. 1.1 where K, G and F are represented
n.xn n xn. n 'xn

1 0 ()01 0 0by M EE R G C(s) E (s) In E_ , respectively where k ]R+. To
S-50



achieve desensitization with respect to the giver, plant G(s) by feedback, we may

choose k E ]R+ as large as possible so that the maximum singular value of the

matrix [I+kG(JW)MV i be mich less than I over the frequency band of

interest. However, stability considerations often impose an upper bound on

the allowable k's. More precisely, we have the following proposition.

Proposition 111.4 (Desensitization and instability)

Consider the feedback system S shown in Fig. I.1, where K, G, F are
n.xn n Xxi  n xn0

represented by kM e it ' , G(s) C :R(s) 0 I E eR 0 respectively, with

k > 0, and sj-det[1+k G(s)M] / const:ant. Assume that(6) Vi= 1,2,...,n o ,

and Vj = 1,2,...,n.,

[ () - [n j(s)] > 3

wher thnoXn i
w j is the (i,j) th element of G(s) Em(s) and Dip(s)] denotes the

ij
degree of the polynomial p(s). Then, for k EIt+ sufficiently large,Q+

det[I+kG(s).M] has 0 -zeros with real parts which tends to ',- as k .

Proof of Proposition 111.4: see Appendix.

Remarks 111.4:

(a) Since det[l+kG(s)M] is equal to the ratio of the closed-leop sytsem

characteristic polynomial to the open-loop system characteristic polynomial

(see e.g. [18]), Proposition 111.4 states a condition under which the closed-

loop system becomes unstable for k sufficient-ly large.

(') aWhen n= n 1 i.e., single-input single-output case, Proposition 111.4

reduces to 'the classical result which can be easily proved by, e.g., the root

locus method (see e.g. [14, p. 141-143]).
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111.2 DISTURBANCE ATTENUATION

All physical systems operate in some environment where they are subjected

to some "uncontrollable" disturbances. If we knew exactly these disturbances,

then ie could program (in advance) the system inputs such that the effect of

these disturbances be cancelled out. However, in most real systems, there

is either no complete knowledge of such disturbances (temperature, wind,

wear, load changes, etc.) or the cost of measuring them and compensating

for them is prohibitive; hence such "open-loop" design based on cancellation

is not practicaL and we have to re,)rt to feedback. The analysis below shows

exactly what feedback can achieve for disturbances attenuation.

Consider the nonlinear, feedback system S shown in Fig. 1.1 and described

by eqns. (1.1)-(1.9) but subjected to some additive external disturbances

as shown in Fig. 111.5 where

di(') is the system-input disturbance,

d () is the plant-ilnput disturbance,

d () is the system-outeut disturbance,

df() is the feedback-path disturbance.

I ~It is intuitively clear that, in general, an erro',:-driven feedback

system such as the one shown in Fig. 111.5 cannot atte-nuate the input dis-

turbances dM(.) and the feedback-path disturbance df(., since such feedback

systems cannot distinguish the system-input disturbance d(. ) from the system input

r() and the feedback path disturbance df() from the system output y('). Indeed,

as seen from Fig. I1.5. the error signal e(.) is affected by the corrupting

signals d. and d; hence u() cannot drive the plant as desired (in some cases,
1 f

judicious filtering may alleviate such problems). Nevertheless, we expect that

o feedback can reduce the effect of plant-input and system-output disturbances

-27-
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on the system output; indeed such effects could be modeled by some appropriate

plant perturbaticns, and their effect on the system output has been shown,

in sec. I11.1, to be reducible by feedback.

The propositions below evaluate exactl the effects of the disturbances

dip do , df, d on the system output y(.). Note that unlike the linear case,

the effect of the disturbance d (x = i,o,f,g) on the system output y(.) is

not given by Hyd (da ), where Hyd : d a-p y is calculated when r and all the

a a
other disturbancos are set to zero.

Proposition 111.5 (Syscem-output disturbance, feedback-path dis.turbance

and feedback),

Consider the nonlinear, feedback ;ystem shown in Fig. 111.5 and described

by eqns. (1.1)-(1.9). Let Cu Gu+d and Fy:= F,(+d). Suppose that

(al)e is linear;

(a2) GK and (I+F6K)- 1 are C maps.

~U.t.c.

(i) if d 0 0 and di =dg df 0, then Vr G ,

Ay := GK(I+FGK)- (r) - GK(I+FGK)- (r)

- 0[I+D(GK)*F] o (111.15)

where the Frechet derivative D(GK) is evaluated at (I+FGK)- (rfaAr) with

Ar = Fd and a G [Q,lI].
.0

(ii) ifdo 0 # 0 and d = d = 9, then Yr G

Ay :GK(I+FGK)- (r) - ,K(I+FGK) - (r)

S{ I+D(GK)-F-I da- -1.d (111.16)

where the Fr~chet derivative D(GK) is evluated at (I+F6K) (r+oAr) with

Ar - -'Fd, and a f [0,1].



Proof of Proposition 111.5: see Appendix.

Proposition 111.6: (Plant-input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. 111.5 and described

by eqns. (I.1)-(1.9), where d = do d = 0. Let Gu := ). Suppose

that

* (al) F: + is linear;

(a2) GK, (I+FGK) are C maps.

Then, Vr E 4e

Ay : GK(I+FGK)-I(r) - GK(I+FGK)- (r)

{ = GK)" -ld ]• [)dal d (111.17)

where the Frechet derivative D(K) is evaluated at (I+FGK) (r+0ar) with

Ar = F[G(u+d )-C(u)], u := K([+FCK)-1 r, and a G [0,1.
~, g .

Proof of Proposition 111.6: see Appendix.

Proosition 111.7: (System-input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. 111.5 and

described by eqns. (_.l)-(I.9), where d = do  d = 0. Suppose that F, GK

and (I+FGK) - 3" are C maps, then Vt G de'

Ay := GK(I+FGK) (r+d) -GK(I+FGK)- (r)

D(GK)[I+DF-D(GK) (111.18)

ii -1

where the Frechet derivative D(GK)is evaluated at (I+FGK) (riadI) and DF

is evaluated at:[GK[l±FGK] .(r+ad ) with a E [0,i].

Proof of Proposition 111.7: Follows directly from Taylor's expansion theorem

[19, p. 190].
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Comments on Propositions 111.5-111.7:

(a) Eqns. (111.15)-(111.18) show exactly how feedback can reduce the effects

of various external disturbances on the system output. Note that, by eqns.

(111.15) and (111.16), simultaneous disturbance attenuation of d and d is,
0 f

in general, impossible.

(b) In the special case that G, K and V are linear, the effects of the dis-

turbances do, df, d , d on the system output reduce to (I+GKF)-Id

[(I+GKF)-IIdf, (I+GKF)-Cd and GK(I+FGK) di, respectively. Note that in

this case, those disturbance-output maps are related by, with obvious

notation

H yde +H = I-H ydKF=I d F (111.19)

111.3 LINEARIZING EFFECT (20] 7

It is often required that, the map from the system input to the system

output is as linear as possible, e.g. H11Fi amplifiers, telephone repeaters,

measuring instruments, pen recorders, ol.c. How to design such a system which

uses some inherently nonlinear plant is an important problem. From the

discussion in section II, we know that if the feedback map F is linear and

if the inverse loop gain is small, then the, closed-oop system input-output

map will be close to a linear map. Thus we expect that feedback has a

linearizing effect on an- otherwise nonlinear system. To make this idea

precise, we first introduce the concept of nonlinearity measure.

ANnlinearity}Measure

I r Let te be an extended normed (input) space. Let be an extended

semi-normed (outp-ut) space. Lot "A [N: 2 e-, , N is 9ausal, nonlinear}.



L{t--{L: Ve - L is causal, linear) . Now consider N G '?and

a set of inputs of interest. intuitively, the degree of nonlinearity of N,

when N is driven by u E V, may h, measured by the error INu - Lul for u e 1/,

where L E i's a "best" linear approximation of N over V. More precisely,

we introduce the following definition.

Definition 111.8 (Nonlinearity measure)

Let N e 91, V C IL and T E . The nonlinearity measure of N over "r

with respect to T is the non-nogative real. number defined by

I inf sup INu-LuI (111.20)

Remarks 111.8:

(a) L* E-fis thus said to be a best linear approximation of N over V/iff L
is a minimizer of (TTI.20), i.c., 6.1,(NA) = sup INu - l-'UIr.

(b) In the case where % Ls a seminormed space, we then have the nonlinearity

measure of N over V/with respect to sup!Y (typically, supY =) and eqn. (111.20)

becomes S(N,) = inf sup INu-Luj.

(c) The well-known describing function (see e.g. (21,22]) is the best linear

approximation of a nonlinear operator with respect to our nonlinearity measure

! (111.20) provided that -2/, the class of inputs, is su'itably defined. Recall

that the criterion which Lho describing functior, method uses to find a best linear

approximation L of a tonlinear system N is to minimize the mean square error

!im- [(Nu)(t)-(Lu)(t)j2dt over a class of inputs u(-) (usually

u(t) = a sin wt, a > 0, w > 0, and thus L depends on the parameters a, o). To

see the relation between the describing function and our nonlinearity measure,

V -let a > 0, w > 0 be given, let VY be the singleton (a ,sin wt} andn0

: e]R+IR [y(.) is asymptotically 2n periodic(8 )} be equipped with
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&he semi-norm I Y [ im y(t)j2dt] I / 2 , then a best linear approximation

to the nonlinear system N according to our definition TIl.8 is a minimizer

1 T 2
of lim [(Nu)(t)-(Lu)(t)1 dt which is precisely the describing function

T-~ 0
of N with respect to the inputs u( ) = asinwt. Note that in this case,

the minimizer of (111.20) (i.e. the describing function of N with respect to

u(')) is parametrized by a and w.

(d) With the framework of extended spaces, we can discuss the nonlinearity

measure of a nonlinear system over a bounded time interval, say, [0,T].

Note that a nonlinear system N may have its nonlinearity measure 6 (N,11) 0,

VT < T* G V, but 6 (N,q) # 0 for T > T*, simply because N is operating

within the linear range .of its characteristics before time T*.

(e) At the cost of some complication, the class of nonlinear operators

under consideration can be extended to include the nonlinear dynamical

relations.

(f) Other nonlinearity measures may be defined, e.g., we can define

INu-LuIT
STi(N,") - inf .sup I . Note that such nonlinearity measure does

LE t ueY y UIT

satisfy all the remarks mentioned above and all the properties stated below.

Howover, we have not been, able- to obtain results similar to the Theorem 111.14

Jbelow.

Properties o f: the, Nonl-inear ity,-Measure 6- (N_)I
Proposition i1I.9:

If N2  NI +L 1 for some L1 E, then 6T(N,/ ) = 6 T(N 2 ,'1), VT E
21 T 1T2

Proposition III.10:

C 2C 'U, then 6T(N,'fl) < (N,-2) VT eC.



Proposition II.11:

Suppose that VT e P ATV is a normed space.and that NO 0. U.t.c. if

N is Frechet differentiabe 9  a t 0, then VT G ',

0 < 6 T(N,BT (O;)) < sup INu-DN(0).UIT 0, as B 0 (111.21)

where BT(0;0) : u: f1eIiuiT< ) and DN(O) denotes the Frechet derivative of

N at 0.

Proposition 111.12:

Let VCU. be the set of inputs of interest. If for some L E ,

Nu Lu, Vu G V, then , (N V) = 0, VT G . In particular, if 'N E ,

then 6 T(N,Y) = 0, VT e, v't 21.

Proposition III. 13:

Let 'Y C U be the set of inputs of interest. Let C be specialized into

the class of continuous,) linear, causal, operators mapping 2 e into 2e"

Suppose that

(al) VT Gf, PT e is a Banach space;

(a2) VT E y, V e is bounded, i.e. sup lUT <
uEV/

W3) P VTE3aI > 0 such that VfD BT(0;0) := {uECe1IuIT< 8}.

U.t.c. if for some T E Z, 6 (N,*Y) =0, then, L*E -such that

I u-L ulr 0' V u CV.(111.22)

Proofs of Propositions '111.9-11£.13: see Appendix.

Comments on Propositions 111.9-111.13:

(a) Proposition 111.9 sLates the obvious fact that if two nonlinear, causal
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operators differ by a linear causal operator, then they must have the same

nonlinearity measure. It is also intuitively clear, from a perturbational

viewpoint, that if a linear, causal operator is subject to some nonlinear

causal perturbation, then the nonlinearity measure of the perturbed nonlinear,

causal operator must be the same as that of the nonlinear perturbation.

(b) Proposition III.10 emphasizes the fact that the nonlinearity measure

depends on the class of inputs we arc c.,nsidering: the larger the class of

inputs we consider, the greater the nonlinearity measure of operator N.

(c) Proposition III.11 is another way of stating the well-known fact that

(since NO = 0) the best local linear approximation of a Frechet differentiable

nonlinear operator N at the operating point 0 is the Frlchet derivative of N

at 0. Note that by eqn. ([LL.21), 6,1 (N,B. 1(0;R)) -> 0 as 6 - 0, i.e. N behaves

locally like a linear operator as we expected.

(d) Proposition 111.12 states that 6 (N, /) satisfies the natural requirement

'or a nonlinearity measure, namely, if N behaves as a 'Anear causal operator
).vr the class of inputs 'V in the time interval [0,T] C Z(, then 6 (Nlf) = 0.

(ef With some mild technic:al assumptions, proposition 111.13 establishes

the following. desirable, property of T(N, ): if 6T(N;iC) = 0, then N

behaves, like a linear, causal operator over 'W in the time interval [0,T) C.

Note that if 6T(N,V) = 0, then 6T (N,T) - 0, VT' < T.
-V

Linearizing Effect of Feedback

With the nonlinearity meaiure defined in e qn. (111.20), we now can make

precise th. idea that feedback has a linearizing effect on an otherwise

nonlinear s ,'stem.

rot- tbat the nonlinearity measure defined in (111.20) allows us to compare

nonlinear systeras by their degree of aonlinearity. However, a meaningful



comparison requires careful. choice of the sets of inputs since the nonlillear-

ity measure depends on the set of inputs we are considering. From an engi-

neering point of view, we are interested in comparing systems which produce

desired outputs (e.g., signals within certain frequency band or dynamical

range). Hfence in the following discussion of the linearizing effect of

feedback, we shall compare the nenlinearity of measure of a nonlinear plant

and of a feedback system which includes such a plant; we shall choose a set

of Inputs for each system so that both systems produce the same set of

desired outputs.

Consider the nonlinear feedback system S shown in Fig. 1.1 and described

by eqns. (1.1)-(1.9), except now that

is an extended seminormed space (111.23)

Let de Ce be the set of desired outputs. Let C'Yde d ,e e
be the set of system-inputs r(.) such that Ityr Yd,e =d,e"

Let Vd C '4 be the set of plant-inputs u(-) such that (111.24)

' ~1,e Ve

Now we have the following theorem:

Theorem 111.14 (Linearizing effect of feedback)

Consider'the nonlinear, feedback system S shown in Fig. 1.1 and described

by eqns. (I.l)-(I.9) and (M11.23)-(I1.24). For some T e , let L* Et

be a best linear approkimatiofi to G, i.e.

( ,d,e- sup (111.25)
d,e

Assumei that F: e and K: IL are linear, causal and that the linear

map (I+L KF) has a causal inverse, then
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T yr'Rd,e ) < P 'T-"d,e)1

where H := (I+FGK) is the closed-loop input-output map and
-yr -

I (T+]cKl*) y
p := sup -- -C- (111.27)

YTU

with

Proof of Theorem 111.14: see Appendix.

Remarks 111.14:

(a) In a design problem, given some G E 9 together -with its best linear

approximation I:G over e with respect to some T E T , if one designs K, F

such that p be much less than i, consistent with other requirements, then

by eqn. (111.26), ST(y, ) < T(, d ( ) i.c. (or the class of inputs under

consideration and for the cime interval of iutrest, the closed-loop system

is much closer to a lineat syqtem than G itself. This result clearly

exhibits the linearizing i.f , feedback.

(b) Note that p is defined via the inverse linearized return difference

operator (I+L KF) (when we break the Loop after the plant ): since

-the nonlinear plant G can be thought as a linear plant L being subject to

some nonlinear perturbation G-L and we know that (see eqn. (lII.8)or [43)) as a

first order -approximation, the effect of a nonlinear perturbation on the otherwise* -1.
lineak closed-loop system is reduced by the factor (I+L.F by feedback.

c) If LG, K, F are l1near and time 'vnriant, thus represented by transfer

function matrices L*(jw), K(jw)., F(j1) , respectively), then p << 1 if the
C

maximum singular value of [T+L (jW)K(jO)F(j)] - Is small over the fregduencies

of interest.



Example III.1 (Sinle-nputsinle-output memorvlcss system)

Consider the nonlinear, Ceedback system S shown in Fig. 1.1, where G is

characterized by the piecewise-linear function shown in Fig. 111.6, K and F

are represetned by constant gains 10 and I, respectively. It is easy to

show that the closed-loop InlptiL-output map 11 is characterized by the~yr

piecewise-linear function shown In Fig. 111.7. Now let us consider the "_case

where Ie = {Y('): <.8)Iy,.8}' then the correspcnding {u(.)

an + -)-] Rr: < +-l]RIIrI <0. 92}. A atraightforward minmax

calculation shows that the best linear approximation L* of G is a constant

gain of 0.6 and the nonlinearity measure of G is 6T(G,%,e) = 0.12, VT G ;

more precisely, 6 (G,Vd) = Sup jGu-0.6u_ = 0.12. Similarly,
6u ,e -0.12 ,T

6 T(H ,rp. ) = Suyr H y r- -rIr 7 VT e Y. Thus the nonlinearity
deyrue 1yr _, 1

measure of G has bedn reduced by 7 by feedback. Note that p = l+ -x = 7d

i.e. for this example, the equality holds in eqn. (111.26). The best linear

approximations of G and I1 are shown, by the broken lites, in Fig. 111.6
- -yr

V and Fig. 111.7, respectively. To further illustrate the linearizing effect

of feedback, we drive the nonlinear plant G with u - 1.2sInt and the closed-

loop system GK(I+FCK) with r = 0.92 sinwt. The corresponding (open-loop

system) output yo and the (cl.osed-loop) output y are shown La Fig. 111.8.

In general, it is quite difficult to calculate the ntonlinearity mea!!ure

T of a nonlinear dynamical system and to obtain the best linear approximatioi.
T

V of such a system. However, for a given nonlinear plant G, we may hLlustrare

the linearizing e.ffect of feedback by computing the closed-]oop sy:stei,, output

t with respectto several different compensator gains while the closed-4oop

system is driven by some Lest signals. Examples 1,..1 and 11.2 in section II

clearly exhibit the linearizing effect of feedback on nonlinear dynamical

systems. Note that the higher the compensator gain is, the more linear the

systems.that3th



closed-.up system appears to be as we expected from the result of theorem

111.14 (since p defined in eqn. (111.27) decreases as the gain of K increases).

111.4 ASYMPTOTIC TRACKING AND DISTURBANCE RETECTTON

One important application of feedback in control is the servomechanism

design which aims at asymptotic tracking and asymptotic disturbance rejection.

Let us consider the asymptotic tracking problem. From the discussion of

generalized Black's formula in sec. IT, we know that if we let F- T in the

nonlinear, feedback system S shown in Fig. 1.1 and if we make the "forward-path

gain" sufficiently large, then, asymptoftially, the output y(.) will be

approximately equal to the system input r(O. Thus we might intuiLively

guess that we can obtain jerfect asymptotic tracking, i.e. zero steady state

error, by requiring the "forward-path gain" be infinite at the frequency of

the system inputs. This turns out to be correct. Indeed in the classical

servomechanism design [23], an integrator is required in the compensator in

order that the system output track 'uji:,i agnals with zero steady-state error.

For multi-input, multi-output systems, such a design principle has also been

proven to be correct for linear (siee e.g. [24,25,26]) as well as nonlinear

case -(see e.g. [27]).

I!!.5 STABILIZATION

Stability is a primary concern of engiieers since an unstable system

iq obviously useless-. lowevetr, there are many iiiherently unstable systems

zich as rocket booster systems, nuclear reactors, some chemical reactors,

etc. whieh .aLe useful in, practice and, hence must be stabilized. Note that

any open-loop stabilization scheme is doomed to failure in practice because

it is based on some kind of cancellation which will eventually fail as a



;p4

result of changes in element characteristics, effects of environment, etc.

Hence feedback seems to be the only way out.

Many researchers h.!vc studied the use of feedback in stabilizing unstable

systeras. For lumped, l.nvar, Lime-invariant systems, it has been shown that

a constant state feedbn¢h (ee e.g. [28,291) or a dynamical output feedback

(see e.g. [30]) can stabllIze an unstable system; recently, Youla et. al.

(31) gave a characterization of all stabilizing feedback controllers,. Y'or

lumped, linear, time-varying sysLems, a time-varying state feedback can be obtained

(see e.g. [32,38,39,40,41 1) to stab I 1[z an unstable system. For distributed,

linear, time-invariant systems, state feedback can also stabilize unstable

systems (see e.g. [33;34, chap. 141). In contrast to linear cases, little

is known about the nonlinear case except for some limiting cases. It

I should also be pointed out that little is known about how to proceed with

the design of a, say, state feedback, stabilization scheme so that the

resulting closed-loop system stability is very robust with respect to changes

in the plant and/or the feedback map. In this aspect, for the linear time-

invariant case, singular value analysis has provided some valuable informa-

tion (see e.g. (44]).

IV. CONCLUSION

This paper has treated the fundamental properties of feedback for

nonlinear, t.me-varying,, multi-input, multi-output, distributed systems. We

observed that the classicnL Black formula does not depend on the linearity

nor the time-invariance assumptions; we used the input-output description

of nonlinear systems to actually generalize Black's formula to the nonlinear

{ case (Theorems 11.1 to 11.3). Our analysis then established achievable

advantages of feedback, familiar to feedback engineers, for nonlinear systems
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(section lIT): theorem IIL.] showt.d th. exact rclatlon between the changes

in the open-loop and closed-loop inputL-output maps caused by nonlinear, not

necessarily small, plant perturbations; propositions 11.5-111.6 calculated

the exact effect of various additive external disturbances on the output of

a nonlinear system; theorem 1.11.14 related the nonlinearity measure of a

nonlinear plant and that of a feedback sy.,tcm Including such a plant;

sections 111.4 and 111.5 briefly reviewed the use of feedback to achieve

asymptotic tracking and disturbance rejection, and to stabilize unstable

plants, while references are given for more detailed discussion. These

results showed precisely how to achieve desensitization, disturbance atr'nua-

tion, linearizing, asymptotic tracking and disturbance rejection by feedback

in nonlinear systems.

The benefits of feedback do not come without limitations or tradeoffs

as propositions 111.2-111.5 showed: proposition 111.2 showed the relation

between desensitization and feedback structure; proposition 111.3 showed the

tradeoff between the sensitivities of a nonlinear, feedback system with

respect to the perturbations on the plant and on the feedback map; proposi-

tion 111.4 showed that stability requirements restrict the achievable desen-

sitization effect by feedback; proposition 111.5 showed the tradeoff between

the output disturbance attenuation and t'he feedback-path disturbance attenua-

tion. Note that, due to the lack of appropriate language and tools, we did

not discuss the 'tradeoff between the gain and bandwidth. Consequently, we

did not explore the limitations on the benefits achievable by feedback

imposed by the plant with fixed gain and and bandwidth (in the context of1~
the Bode design method [451, the gain-bandwidth of a given active device

imposes an upper bound on the return difference over a specified bandwidth),.



Also note th:it we have only 'treated dotertinistic systems, i.e. no stochas-

tic models were introduced for noise, perturbations, element variations,

etc. Thus, in particular, we did not mention the well-known limitation on

compensator gain caused by noise.

In clarifying the features of nonlinear systems that are required for

feedback to be advantageous, this paper will help engineers obtain better

understanding of nonlinear, feedback systems.

-

It
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APPENDIX

Proof of Theorem II. :

Note that

1t GK(I+FGK) 1

.yr

- F FGK(I+FGK) (since F is invertible)

F- FGK[(I+(FGK) )(FGK)] (since FGK is invertible)

F1 [ 1+ (F K) 1(A .1)

To estimate II r for r eo , we consider first z := [I+(FGK) - I r.~yr d, c. ..

To obtain for any T GZa, zT , note that r = [I+(FGK) ]z, hence

Z T = r T - (FGK)- z T. Now the Lipschitz constant [13, p. 63] of the right

* hand side, over/(/ ), is jT[(FGK)- < 1. By assumption (a3), the

successive approximations starting with zT = r remain in 'V( d,e) forever;

since the contraction constant is < 1, we have that

]z-rT 5_I(FCK)-lr IT(A2
-i (FK)-!

Thus, for each T E J,

f yr I'-lrT - I l• .-. Ir-l1+(r K)- F -rF-rl

SX(F') [I+(FG-ir-rT (by assumption (i))

-li(FGK)7'rI
< X(F ~~~- T (by (A.2))

LYTK[FGK)I

In particular, if eqns.. (11.10) and (11.11.) hold, i.e. for T E sufficiently

large,
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.I(FGK)-rl < IrT and T[(FGK)- I << I~~ < (F- i  T ~~-

then for T e sufficiently large,

IF- rr
III r-F ri T << r - - -rl , 11 G Q.E.D.

Proof of Theorem 11.3:

Since F is invertible, we have, from Fig. 1.1,

y=H r=F (r-e)
~-yr

Hence, for T E'* sufficiently large, Vr e Pde

IHyr r-F r IT IF-(r-e)-F-r IT

< X(F-()IeIT (by assumption (i))

X(F ) + (I+FCK)- rlT

<< IF-rIT (by assumption (ii)) Q.E.D.

Proof of Corollary 11.3.1:

H r-F -lr F -1 (r-e) - F-r 1 F-le (since F- 1 is linear)
-yr - -

:_ F-(I+FGK) r

= - [(I+FCK)I r

-[F(I+GKF)-r (since F is linear)

-(I+GKF-) F

Hence for T E "sufficiently large,



l yrr - F-  T =(1+GKF)-IF-Ir I

<< Frt 
(by assumption)T

Q.E.D.

Proof of Corollary 11.3.2:

Consider the system S in the sinusoidal steady state (since the

closed-loop system is exp. stable by assumption (a2)) with input

r-exp(jwt) and error e.exp(jwt), where r, e C cn Then, by linearity

of F(jw),

H yr (jw)r F(jw)- (r-e) F(OW) Ir-F(jw)- le

Thus

Iy (jw)r-F(jw) r = -F(jw) e
yr

-1 -= -F(Jw) [(I+FGK)(J)) r

-F(I+GKF (jw) r

-,F(jw)(I+CKF)(Jw)] r (by linearity of F(jw))

K -[(I+GKF) (Q) IF(jw)- r

Hence

jiy(jw)r-F(jw)'rI (I+GK,) (jw)]F(

yr

<< IF(Jw)'- rl (by assumption (11.21)) Q.E.D.

Proof of Theorem 111.1:

AH := -HZyr -yr ~yr

- GK(I+FGK)- GK(I+CK)-
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a K(I+F6K) 1 -GK(I+FGK) 1I +K(I-Fc;K) 1 -GK(I+FG;K)l

GK(I+FGK)- L -G6K(E+FGK)-I[-F-AG.K(T+FGK) 1-

+ AG-K(I+FGK) (since F is linear) (A.3)

Evaluating eqn. (A.3) at r G we hlave

All (r) =GK(I+FOK) (r)-'K(1+1-'K) (r+fAr) +All (r) (A.4)

where

r.+Ar [I-F.AG-K(I+FGK)- I(r) (A.5)

Since, by assumption, Hy =CK(T+FCK) is a C map, we can evaluate

All (r) by the Taylor's expansion theorem 119, p. 1901 and obtain
-yr

Al r) J 0 LKI+F6,/ ](r~caAr) Arda +A1 (r) A6
-y- -1o

= (GK) -[ I+F-D (GK *Ardci+ AH (r)(A6

--- 1
where the Fr~chet derivative D(aK) is evaluated at (I+FGK)- (r+cLAr).

Note that eqn. (A.5) implitcs that

Ar = ((I-FAG-K(I+FGcK) 1}(r)

=F*AG*K(I+FaK)" [I-F-A(>-K(I+F6K) 1(r

=F-AG'K-(I+FGK)- (r)

=F-AH (r)

Thus eqn. (A.6) becomes

AH (r) =-D(GK)-[I+F*D(6K)- *F-AH (r)da +AH (r)
.yr -so --. o- --yr



= -ID(GK)"F[I+D(GK)F]- d'Ai (r) +AH (r)
Jo .. .. Y

(since F is linear)

{ I-D(K) -F[TI+D(,K) F -ld'Aly (r)

i [I+D(GK)"FI dc,.Alyi 0 (r) (A.7)

0 (A.7)

Eqn. (A.7) is true, Vr G , thus eqn. (III.4) follows. Q.E.D.

Proof of Proposition 111..2:

Note that

-1 -1GK(I+FGK) = (I+GKF) GK (since GK is linear)

and that

-'-1
2 G 2 (I+F.2G2)-IK 1 [ I+F IGK2 (I+F 2G2)-IK 1-i

GK (+F [ K(I+F2KK . .K (since K, is linear)

=G K2 [1+(F+KF 1 )JK2j -K

=[I+K (F +KIF ) K2K (since GK is linear)_ -.2 _J2 -2 1 .. _22

Thus eqn. (111.10) follows f rom eqn. (1 1.9). Q. E. 1.

11 Proof o! Proposition 111.3:

All GK(I+FGK)1' -6K(IF6K-l
-yr

= aK(I+FG'K) -[I+AF.+K(I+FiK) 6K(I+FdK) 1  (A.8)

4 Evaluating eqn. (A.8) at r " , we-have

AH r GK(I+FaK) -l (r+Ar) -GK(I+FGK) (r) (A.9)-yr

where
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r+Ar [I+AF.GK(I+FGK)- Ir (A.1O)

Since, by assumption (a3), GK(I+FCK)- 1 is a C map, we can evaluate

AH r by the Taylor's expansion theorem and obtain
.yr

A!yrr = 'DG)•[IFD(K -dc" Ar (A.lii)

where the Fr6chet derivative D(,K) is evaluated at (+F6K) (r+aAr), and

DF = F since F is liner.

Note that eqn. (A.10) implies that

-1 -1
Ar = {[I+AF.CK(T+FCK) -- r

-AF"GK(I+FEK)- t+AF"6K(i+FK)- - ir

-AF.,K(I+FGK)- r

=-AF-I r
- ~yr

Thus eqn. (A.11) becomes

H r D(-da.AF r (since F is linear) (A.12)
- r .. ... .y r -

- Fdc.F-IAV.Hyr (since F is invertible)
- -I..yr

D(GK)F.[~+D(GK).- IdcF *AF-1~ r (since F is linear)

={[1+D( K)Fl Fa-fl .-AF.H r,

. .. , ~ ~ yr

ie.

AJ yr -yr on e

Since I is invertible, we have

~yr



All IF I1+')'.('K-' AF ona Q.E.D.-.yr ..yr j~.' r~~1 *~ o

Proof of Proposition 111.14:

For completeness, we first state an algorithm [36] which determines

the asymptotic behavior of the zeros of a polynomial. This algorithm is

a direct application of the Newton's diagram (or known as the method of

Puiseux, see e.g. [35, 1p. 105]).

Algorithm:

Data: Polynomial P(s,k) Cy L(k)s eIR[s]

where, for . 0,1,2,...,n

c(k) a , k, cc 's el

m A 0 , and ct # 0, VO < < n-l such that mt > 0enmn  Am

tp1: Find i eIq, and Tp, q G P 0 < p < i,where i, T 's, q 's are
P p +' p p

fsuch that

(i) i is the largest integer such that 0 =T < T < < T

(ii)o max(momv...n;

(iii) for 0 < p < i,
mZ q- -T, VO< k< nV (

with equality holds for at least two 's;

(iv) if Z (k ) is the smallest (largest). Z such that m.  q p-2.Tp then
-p, p

,.p+ = k, for p = 0,l,...,i-l. (The procedure of finding i, T 's, q 's

can be best illustrated graphically by the modified Newton's diagram

Sshown on Fig. A.1.)
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Step 2: For each 0 < p < i, form the polynomial

p (Z) = E 9, (A.13)
RE{. Tp+M =qp

Step 3: Calculate the zeros of and denote them by z01 , j 1,2,...,n

Calculate the nonzero zeros of 4 p, 1 < p < i, and denote them by zpj,

ppj = 1,2,...,p

Step 4: As Iki + 0, the n zeros of the polynomial P(s,k) behaves as

Zp k P J = 1,2,...,np , 1) = 0,1,2,...,!

where n >1, for i<p<i, and np n .

Now we can apply this algorithm to prove Proposition 111.4. Without

loss of generality, we only have to prove the case where n n. and
0 1

14 = In .Note that

det[I+kG] = 1 4 k[trace G(s)]

2
+ k [E principal minors of G(s) of order 2]

+ ... + kmdetG

1 di -k 4 n fl d.)Q+ -..- + k fl[ d det Gj

i V

-2

[I d d [j di +k (s) + k a()+---+k ()
ij ij 1 2 cm(s

V : where a(s) EIR[s], j = 1,2...,m.

Let [i[, d] = n. Since, by asqsumption, Hd -n > 3, Vi,j = 1,2,...,m,
w j i ij

we have that 3[(%.(s)J n-3j , J, 1, ?2, ... , Hence wi th. i defined in



Step I of the algorithm above,

n n-3Wiz = Zn+a z~ +'' 3,

where 4i(z) is defined in (A.13).
1o

Now we claim that (z) has ("+-zeros. To see this, consider some

' E > 0 sufficiently sma][; apply the Routh test (see e.g. [37]) to the

polynomial (z+E). Since >_ 3, the first column from the left in the

Routh array contains some strictly negative numbers, thus i(z) has some
0 T iC-zeros. lHence as k - det [+kG] has zero behaves as z k with

zi  C C+ and Ti > 0. Q.E.D.

Proof of Proposition 1.5:

(i) By definition, u:= u+d 0 .. Then, by eqn. (111.4) (of Theorem III.1),

we have that

Ay = AHyr(r) - I+D(GaK)F da'd0  (since AHyor r) = do)

1 I+D(GK) 'F] da'd 0  (since D(GK) D(GK))

where the Fr&chet derivative D(GK) is evaluated at (I+FGK) (r ctAr) with

Ar = F'All (r) = F'd
- y0r '

(ii) By definition, y:= F(d+y) Fdf +Fy (since F is linear). Then

AFF.y = (F- = F'd (A.14)

Thus, following the proof of Proposition 111.3, in particular, eqn. (A.12)

we have that
Ii

Ay -0D(GK)[I+F.D(GK)]-dc.AF. (since D(6K) =D(GK))
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r-l

=-)oD(GK)[I+F'D(GK)] Fdc.df (by eqn. (A.14))

= -JD(GK)'F[I+D(GK).F] d (since F is linear)

= [ I+D (GK) F] }1 .a- - f

where the Frechet derivative D(GK) is evaluated at (I+FGK)- (rfAr) with

Ar = -AF.Hyrr = -AF'y = -Fdf and a G [0,11. Q.E.D.

Proof of Proposition 111.6:

By definition, G := G(U+d ). Then by eqn. (II.4) (of Theorem III.1)

we have that

Ay I[+D(GK) F] -da [ G(u+d g)-G(u)]

Jo --- - -1I
(since AHY r(r) = G(u+d )-G(u), where u = K(I+FGK) r)

1
[I[I+D(6K).F]-i dcd}f DG(u+Od )d•631d

where the Frechet derivative D(GK) is evaluated at (i+FGK) -(r4aAr) with

-1
Ar =F[G(u+d )-G(u)), u := K(I+FGK) r, and ( E [O,1]. Q.E.D.

Proof of Proposition 111.9:

ST(N inf sup IN2 u-LuI

inf sup IN u+hL u-Lu

= inf sup [N u-L'uI
1 T

AL'(-f uF ~ T
6 i :6 (NIV) , VT E , Vlf C It Q.E.D.



Proof of Propositi.onI 1110:

6T(N,V ) :inf :ip N Nu-Lu T
T- 1

< in[ su, INu-LuI , (since jI C 2 C It

T(N,4 2 )  VT Esr' Q.E.D.

Proof of Proposition 111.11:

Note that DN(O) E:X. Hence

0 < 6T(N,B (0;)) < sup INu-DN(0)u(T
- T uEB (0;0) I

T

By the definition of Fr6chet derivative, we know that for any e > 0,

3 6 > 0 such that INu-DN(0)'u1T < CIUIT, V)UIr < 6-. Hence as 0,

the right-hand side of eqn. (A.15) tends to zero and 6 (N,B (0;a)) - 0.
T~ T

Q.E.D.

Proof of Proposition 111.12:

Let IrC % - If, for some 1, G , Nu = Lu, Vi E, then L is a minimizer of

Ix sup INu-LuIT, VT E 7", and 6 (N,l?) = 0, VT E. In particular, if N Go,
-E V T" T

then N is a minimizer of sup INu-LuIT, VT E -Y, V*!rCL hence 6 (NV) = 0,

VT G O , YV C q~ . Q.E.D.
e

Proof of Proposition 111.13:

By assumption, for some 'P V- ,

6T(N,'V) := inf sup INu-LuIT 0 (A.16)

Thus for this T, there exists a sequence (Li)i=0 C such that

O sup INu-L i 0, s i - (A.17)
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or equivalently, for any c > 0, there exists m > 0 such that

sup INu-L iUT < C I Vi > mI  (A.l8)

Now for any E > 0, if we let c 1 and choose the corresponding ml > 0

such that (A.18) holds, then

IL sup IL.u-LjUIT (by definition of the induced norm,

Li-Lj T lU'T=B 1 ir with 6 defined in assumption (a3))

<I sup ILiu-tjuIT (by assumption (a3))

<[jsup INu-LuIT+Sup INu-LjUIT]

2c = C , ViJ > m (by (A.18) and the choice of m

Thus (Li) i=0 is a Cauchy sequence in (P

Note that for each T G, (P Te , I . IT
) is a Banach space with the

usual induced norm since, by assumupLion (al), P!T e is a Banach space.

Hence there exists L* EC such that

I-IT
PTL--+ P L* (A.19)

Note

INu-L*uT < INu-L.ujT + ILiu-L*uIT

< sup INu-LiuIT + sup -Liu-L*uIT

< sup INu--LlII + IL -L*Isup IUIT, Vi (A.20)

By (A.18), .(A.i9) and the assumption (a2) that sup IUIT < ', the right-

hand side of eqn. (A.20) tends to zero as i o. Hence INu-L*ulT = 0,

Vu E 'y. Q.E.D.



Proof of Theorem 111.14:

Let LG be a linear, causal operator such that the linear operator

Ly r : LGK(+FL K)I s well defined and causal. Then-yr ---- C

H yr r L .yr r GK(_I+FGK)- Ir - 1, GK(I+FLGK) -1r...
=GK(T+,K) LCF- -1lr

+ LGK(I+FGK)-r -K(I+FLGK) r

C-- ' -G)u
+ (S+FLGK)- (r+FL

C1 +- (I+FGK)-r(I GK) K) - 1 F(-LGK)
-G --- +-- G

(-LG)u - L~ fF( ... . .. u(since F,LG,K are linear)

= IL'(I+LGK) I (G-LG)u , (since F is linear)
= (C+7GK)-I(G_ )u (A.21)

i' Thus

+ yr- yr(IT  ( K-(GL ))T

-(I+LK u I T

- [(CLG~ [ (G-L G )UIT (A.22)

K) arTieradu ~+)r

provided that PT(C-L )u 0 O.

On letting L LK(I+FLG K )  where L is defined in eqn. (111.25),

-yr-G

we have, from eqn. (A.22)

~~~~ T(Hyde ) = inf sup [yrr LrT

T yr -yr T ~r I

<-L rl) ir r,,I

-Y

*'* * -1.

de
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I (I+L*KF) JY I

asup Iu - LGUIT

= p. T( d (A.23)

where := - , and p is defined in eqn. (111.27). Note the last

inequality follows since when r G de' tile corresponding

u K(L+FGK) e Q.E.D.

I I

i'
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FIGURE CAPTIONS

Fig. I.1: Nonlinear, feedback system S under consideration.

Fig. 11.1: An example realizing a nonlinear input-output map using

nonlinear feedback and a large forward-path gain: the

logarithmic amplifier.

Fig. 11.2: A nonlinear, single-input, single-output, dynamical system

illustrating the generalized Black result.

Fig. 11.3: Characteristics of the nonlinearity (') in the nonlinear,

feedback systew shown in Fig. 11.2.

Fig. 11.4: System outputs of the nonlinear, feedback system shown in

Fig. 11.2 when the system input is r(t) = sin 10t and the

compensator gain is k 1 1, 10, 20 and 40, respectively.

Fig. 11.5: Error signals of the nonlinear, feedback system shown in

Fig. 11.2, when the system input is r(t) = sin lOt and the

compensator gains are k = 10, 20 and 40, respectively.

Fig. 11.6: The input to the nonlinearity 4(') of the nonlinear, feedback

system shown in Fig. 11.2, when the system input is

r(t) = sin lOt and the compensator gains are k = 1, 10, 20

and 40, respectively.

Fig. 11.7: A nonlinear, multi-input, multi-output, dynamical system

illustrating the generalized Black result.

Fig. 11.8: Characteristics of the odd function V(.).

Fig. 11.9: Characteristics of 1+0.2 tanhx, x > 0.

Fig. 1H.10: System output yl( . ) of the nonlinear, feedback system shown

V in Fig. I.7 when the system inputs are rl(t) = sin lOt,

r 2 (t) = 0.8 sin 15t and the compensator gains are k 1, 10,I2
20 and 40, respectively.
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fig. II.11: System output y2 (-) of the nonlinear, feedback system shown

in Fig. 11.7 when the system inputs are r (t) = sin lOt,

r 2(t) = 0.8sinl5t and the compensator gains are k = 1, 10,

20 and 40, respectively.

Fig. 11.12: Error signal el() of the nonlinear, feedback system shown

in Fig. 11.7 when the system inputs are rl(t) = sin 1Ot,

r 2 (t) = 0.8 sinl5t and the compensator gains are k = 10, 20,

and 40, respectively.

Fig. 11.13: Error signal e2(*) of the nonlinear, feedback system shown

in Fig. 11.7 when the system inputs are r1 (t) = sin lOt,

r 2 (t) = 0.8 sinlt and the compensator gains are k = 1.0, 20

and 40, respectively.

Fig. 11.14: One period of the steady state trajectory of the system

output y(-) of the nonlinear, feedback system shown in

Fig. 11.7 when r (t) = sin lot, r (t) = 0.8 sin 15t and k = 40.1 2

Fig. 11.15: One period of the steady state trajectory of the input to

the nonlinearity 4(.) of the nonlinear, feedback system

shown in Fig. 11.7 when rl(t) = sin lOt, r 2 (t) = 0.8 sinl5t

and k = 40.

Fig.' III.: A comparison open-loop system for (comparative) sensitivity

analysis.
Fig. 111.2: The perturbed closed-loop system: the plant G becomes

Fig. 111.3: The perturbed open-loop system: the plant G becomes G.

the precompensator K remains unchanged.
-0

Fig. 111.4: The nonlinear, multi-loop feedback system for studying the

relation between desensitization and feedback structure.

Fig. 111.5: Nonlinear, feedback sy..tem S subjected to additive external

dist.t.rbances.



Fig. I11.6: Characterizations of the nonlinear plant G and its best

linear approximation L(in broken lines).

Fig. 111.7: Characterizati.ons of the closed-loop system H and its best
-yr

linear appr-oximation (in broken lines).

Fig. 111.8: Outputs of the nonlinear plant 0, y0 , and the closed-loop

systein II , y, when the plant input u~t) = 1.2 sinwt and the

closed-loop system input r(t) =0.92 sinwt.

Fig. A.l: Modified Newton's diagram for finding the parameters 1,
T S ( I
sPcjS
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FOOTNOTES

In describing the feedback system under consideration, we adopted the

control terminology, i.e. the power stage of the amplifier is called
the plant; the preamplifier is called the compensator; etc. We trust
that this will cause no great inconvenience to feedback amplifier
enthusiasts.

(2)

In the single-input single-output, linear, time-invariant case,

p = Op; however, if any one of these three conditions fails, one
must write ap. We do so to be self-consisterit.

An operator N is continuous on an extended space4Z iff VT E, N
is continuous.

(4) nxn
If A E , the largest singular value of A is the square root of the
largest eigenvalue of A*A, where A* denotes the comaplex conjugate of
A; it is also the I2-induced norm of the linear map A: on _ fn.

(5)Note that for any physical system, (I+6(jw)K(jw)F(j)] - 
- T as

JI J . Hence it is impossible to fulfill this requirement for all
w (- R.

(6)Recall that if for some (i,j), n .(s) - 0, then 3ni: =
iij

""TThe results of this section were obtained with the collaboration of
A. N. Payne.

A function y(-): R+ -IRn is said to be asymptotically T-periodic iff
y(') = YT(-)+yo('), where YT(.) is a T-periodic function and y0 (t)
tends to 0 as t 40*n

N E 11is said to be Frechet differentiable at x iff VT C:, PTN is
Frechet differentiable at x.

(L)L E is said to be continuous if f VT P", PTL is continuous, i.e.

< °<
Y 1T sup -~F<~

ii
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